粉體行業在線展覽
面議
674
MAVEn™高通量16通道果蠅代謝監測系統
果蠅作為經濟實用的模式動物,可用于中樞神經系統紊亂、炎癥性病變、心血管疾病、癌癥以及糖尿病等治療研究,而這些疾病的發生從生理上來說都與生物個體長期的代謝功能異常密切相關。
MAVEn™高通量16通道果蠅代謝監測系統是由世界知名的美國Sable Systems International動物代謝測量公司生產的一款16通道、高分辨率及自動化的果蠅代謝監測儀器,可廣泛用于代謝紊亂造成的各種流行疾病治療的機理研究。
MAVEn™果蠅代謝系統作為果蠅代謝分型監測方面的權威產品,主要具備以下特點:
1. 改變了傳統的單只果蠅的封閉或半封閉式測量模式,實現每個測量室都有實時氣
流通過的完全開放式測量,避免了測量時內出現缺氧(hypoxia)或高碳酸血癥
(hypercapnia),可一次測量多達16只個體。
2. 15秒就可以完成一只果蠅的代謝監測,這代表了目前技術的**水平。
3. 數據可以通過SD卡把帶時間標簽的CSV格式直接導出到電腦。
4. 可選配FLIC果蠅覓食、AD-2果蠅活動、氣體(氧氣、二氧化碳、水汽以及其它可
檢測氣體)等監測單元。
5. 參考文獻*多,高達4萬多篇,屬于前沿科技。
具體性能指標:
1. 氣流流速:5毫升/分鐘-200毫升/分鐘,質量流量計,PID精確控制,精度為2%。
2. 昆蟲測量時間:15秒-3小時可程序化選擇;基線測量時間:15秒-3小時可程序
化選擇。
3. 氣壓測量:分辨率1Pa,精度0.05%。
4. 光照水平:0.1-5000勒克斯。
5. 溫度測量:0-50℃,分辨率0.01℃,精度±0.25℃。
6. 模擬輸入:6個模擬輸入,16bit分辨率,-5至+5伏電壓信號,可接SSI其它儀器
或實驗室其它氣體分析儀等。
7. 數據格式:CSV格式;數據存儲:SD卡,**支持32G的SD卡。
8. 雙通道高精度差分式氧氣分析測量儀:測量技術:燃料電池原理氧氣傳感器,
雙通道;氧氣濃度量程0-100%(用戶可自定義設置5個級別);差值量程±50%;
精度0.1%(O2濃度2-100%時);分辨率0.0001%O2;漂移< 0.01%每小時(溫度
恒定情況下);響應時間小于7秒;24小時漂移<0.01%;20分鐘噪音<3ppm RMS;
數字過濾(噪音)0-40秒可調,增幅0.2秒,內置A/D轉換器分辨率16bits;溫
度、壓力補償;傳感器溫度測量范圍0-60℃,精度0.2℃,分辨率0.001℃;大
氣壓測量分辨率0.0001kPa,精度為滿量程的0.05%;適用流量范圍5-2000mL/
min;4通道模擬信號輸出(0-5V BNC)可輸出通道1的氧氣濃度,通道2的氧氣
濃度,1和2的差值,大氣壓;數字輸出:RS-232;具4行文字LCD顯示屏,帶背
光,可同時顯示2個通道的氧氣含量和它們的差值,以及大氣壓;獨具PID
(Proportional-Integral-Derivative)溫控單元,保證內部氧氣傳感器溫度恒
定,進一步提高了氧氣測量的精度和穩定性;供電12-24VDC,8A,配交流電適
配器;工作溫度:5-45℃,無冷凝;重量6.4kg;尺寸43.2cm×35.6cm×20.3cm
9. 超高精度二氧化碳分析測量儀:用于測量微小昆蟲(比如果蠅、蚊子等)或蜱
螨類微小動物的呼吸代謝,可同時測量CO2濃度和H2O濃度;CO2量程0-3000ppm;
準確度<1%;分辨率0.01ppm;H2O量程0-60mmol/mol;準確度1%;
10. 二次抽樣單元:內置氣泵、精密針閥、質量流量計,可用來給氣流樣本做二次
抽樣,也可單獨作為氣源使用;流量范圍5-2000mL/min;精度為讀數的10%;
分辨率1mL/min;具備2行顯示LCD顯示屏;帶0-5V BNC模擬信號輸出;數字輸
出RS-232;供電12-15VDC,20-350mA,配交流電適配器;工作溫度:0-50℃,
無冷凝;重量1.5kg;尺寸16cm×13cm×20cm;
產地:美國
文獻案例:
在2016年已發表的果蠅有關文獻中,使用SSI果蠅代謝監測系統的達14篇,2015年11篇,截止目前相關文獻共計500多篇。
1.Andrew N R, Ghaedi B, Groenewald B. The role of nest surface temperatures and the brain in influencing ant metabolic rates[J]. Journal of Thermal Biology, 2016, 60: 132- 139.
2.Baaren J, Dufour C M S, Pierre J S, et al. Evolution of life‐history traits and mating strategy in males: a case study on two populations of a Drosophila parasitoid[J]. Biological Journal of the Linnean Society, 2016, 117(2): 231-240.
3.Bartholomew N R, Burdett J M, VandenBrooks J M, et al. Impaired climbing and flight behaviour in Drosophila melanogaster following carbon dioxide anaesthesia[J]. Scientific reports, 2015, 5.
4.Basson C H, Clusella-Trullas S. The behavior-physiology nexus: behavioral and physiological compensation are relied on to different extents between seasons[J]. Physiological and Biochemical Zoology, 2015, 88(4): 384-394.
5.Bosco G, Clamer M, Messulam E, et al. EFFECTS OF OXYGEN CONCENTRATION AND PRESSURE ON Drosophila melanogaster: OXIDATIVE STRESS, MITOCHONDRIAL ACTIVITY, AND SURVIVORSHIP[J]. Archives of insect biochemistry and physiology, 2015, 88(4): 222-234.
6.Casas J, Body M, Gutzwiller F, et al. Increasing metabolic rate despite declining body weight in an adult parasitoid wasp[J]. Journal of insect physiology, 2015, 79: 27-35.
7.Correa Y D C G, Faroni L R A, Haddi K, et al. Locomotory and physiological responses induced by clove and cinnamon essential oils in the maize weevil Sitophilus zeamais[J]. Pesticide biochemistry and physiology, 2015, 125: 31-37.
8.DeVries Z C, Kells S A, Appel A G. Estimating the critical thermal maximum (CT max) of bed bugs, Cimex lectularius: Comparing thermolimit respirometry with traditional visual methods[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2016, 197: 52-57.
9.Dreiss A N, Séchaud R, Béziers P, et al. Social huddling and physiological thermoregulation are related to melanism in the nocturnal barn owl[J]. Oecologia, 2016, 180(2): 371-381.
10.Duun Rohde P, Krag K, Loeschcke V, et al. A Quantitative Genomic Approach for Analysis of Fitness and Stress Related Traits in a Drosophila melanogaster Model Population[J]. International Journal of Genomics, 2016, 2016.
11.Fischer K E, Gelfond J A L, Soto V Y, et al. Health effects of long-term rapamycin treatment: the impact on mouse health of enteric rapamycin treatment from four months of age throughout life[J]. PloS one, 2015, 10(5): e0126644.
12.Groom D J E, Toledo M C B, Welch K C. Wingbeat kinematics and energetics during weightlifting in hovering hummingbirds across an elevational gradient[J]. Journal of Comparative Physiology B, 2016: 1-18.
13.Gudowska A, Boardman L, Terblanche J S. The closed spiracle phase of discontinuous gas exchange predicts diving duration in the grasshopper, Paracinema tricolor[J]. Journal of Experimental Biology, 2016: jeb. 135129.
14.Haddi K, Mendes M V, Barcellos M S, et al. Sexual Success after Stress? Imidacloprid- Induced Hormesis in Males of the Neotropical Stink Bug Euschistus heros[J]. PloS one, 2016, 11(6): e0156616.
15.Haddi K, Oliveira E E, Faroni L R A, et al. Sublethal exposure to clove and cinnamon essential oils induces hormetic-like responses and disturbs behavioral and respiratory responses in Sitophilus zeamais (Coleoptera: Curculionidae)[J]. Journal of economic entomology, 2015: tov255.
16.Horváthová T, Antol A, Czarnoleski M, et al. Does temperature and oxygen affect duration of intramarsupial development and juvenile growth in the terrestrial isopod Porcellio scaber (Crustacea, Malacostraca)?[J]. ZooKeys, 2015 (515): 67.
17.Kivel? S M, Lehmann P, Gotthard K. Do respiratory limitations affect metabolism of insect larvae before moulting: an empirical test at the individual level[J]. Journal of Experimental Biology, 2016: jeb. 140442.
18.Lebeau J, Wesselingh R A, Van Dyck H. Nectar resource limitation affects butterfly flight performance and metabolism differently in intensive and extensive agricultural landscapes[C]//Proc. R. Soc. B. The Royal Society, 2016, 283(1830): 20160455.
19.MacMillan H A, Schou M F, Kristensen T N, et al. Preservation of potassium balance is strongly associated with insect cold tolerance in the field: a seasonal study of Drosophila subobscura[J]. Biology letters, 2016, 12(5): 20160123.
20.Meyers P J, Powell T H Q, Walden K K O, et al. Divergence of the diapause transcriptome in apple maggot flies: winter regulation and post-winter transcriptional repression[J]. Journal of Experimental Biology, 2016: jeb. 140566.
21.Plav?in I, Sta?ková T, ?ery M, et al. Hormonal enhancement of insecticide efficacy in Tribolium castaneum: Oxidative stress and metabolic aspects[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2015, 170: 19-27.
22.Rodrigues C G, Krüger A P, Barbosa W F, et al. Leaf Fertilizers Affect Survival and Behavior of the Neotropical Stingless Bee Friesella schrottkyi (Meliponini: Apidae: Hymenoptera)[J]. Journal of economic entomology, 2016, 109(3): 1001-1008.
23.Thienel M, Canals M, Bozinovic F, et al. The effects of temperature on the gas exchange cycle in Agathemera crassa[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2015, 183: 126-130.
24.Williams C M, Chick W D, Sinclair B J. A cross‐seasonal perspective on local adaptation: metabolic plasticity mediates responses to winter in a thermal‐generalist moth[J]. Functional Ecology, 2015, 29(4): 549-561.
25.Williams C M, Szejner-Sigal A, Morgan T J, et al. Adaptation to Low Temperature Exposure Increases Metabolic Rates Independently of Growth Rates[J]. Integrative and comparative biology, 2016: icw009.