粉體行業(yè)在線展覽
面議
483
應(yīng)用
Y(II)或ΔF/FM’ 或 (FM’ – FS )/FM’) 是經(jīng)受時間考驗的光適應(yīng)測量參數(shù),比FV/FM對更多類型的植物脅迫更加敏感。已有的大量證據(jù)表明FV/FM對許多種植物脅迫和健康植物的光系統(tǒng)II的測量十分出色,而Y(II)或光量子產(chǎn)額則可測量實際光照下光適應(yīng)環(huán)境和生理狀況的光系統(tǒng)II的效率。
原理
采用調(diào)制飽和脈沖原理,測量植物的葉綠素熒光,通過相關(guān)文獻的研究成果,計算植物的光量子產(chǎn)額及相對電子傳遞速率,同時可測量PAR、葉溫、相對濕度等環(huán)境參數(shù)。
特點
葉片吸收測量:提供葉片吸收測量及隨環(huán)境變化導(dǎo)致的葉片吸收變化。根據(jù)Eichelman (2004) 葉片吸收在健康植物的變化范圍在0.7~0.9 之間。因此,為獲得準確的ETR或“J”,Y(II)測量儀提供了一個可靠的測量方法,
FV/FM測量單元:可額外選配FV/FM測量儀,用于暗適應(yīng)測量。
具有暗適應(yīng)葉夾
陽光下屏幕可見
圖形顯示FV/FM曲線
2GB存儲空間
USB通訊
數(shù)據(jù)Excel查看
先進的PAR葉夾:采用底部葉夾打開裝置,防止測量時誤操作打開葉夾。對傳感器進行余弦校正,確保葉片相對測量光的角度不變。
FM’校正:對于具有高光照強度歷史的植物,完全關(guān)閉光反應(yīng)中心是一個問題,Y(II)測量儀使用Loriaux &Genty 2013的方法進行FM’校正,確保誤差*小。
測量植物葉片的吸收:能夠直接測量植物葉片的吸收,而不是使用平均值0.84計算ETR。
自動調(diào)制光設(shè)定:快速準確自動的調(diào)整合適的調(diào)制光強,避免人工操作的誤差。
先進算法避免飽和脈沖NPQ:采用25ms內(nèi)8點的平均值確定FM’,消除飽和脈沖NPQ的影響。
更精確的葉溫測量:采用非接觸式紅外測量,測量精度可達±0.5℃。
直接測量相對濕度:含有測量氣體交換使用的固態(tài)傳感器,可測量相對濕度。
降低葉片遮擋的設(shè)計:傾斜的角度減少對葉片的遮擋,可以測量擬南芥等小葉。
系統(tǒng)組成
標配:
Y(II)光量子產(chǎn)額測量儀、充電器、USB電纜、便攜箱、2個吸收測量單元、U盤(包含說明書)。
可選:
FV/FM測量儀及10個暗適應(yīng)葉夾、三腳架。
技術(shù)指標
測量參數(shù):
Y(II)或ΔF/Fm‘、ETR、PAR、T、FMS或FM’、Fs、α(葉片吸收&葉片透射)。
監(jiān)測模式:可使用電腦,長時間監(jiān)測Y(II)、ETR、葉片吸收、PAR、葉溫、相對濕度、及NPQ。
相對濕度:5%~95%,±2%。
可使用AC或USB供電,可配三腳架。
技術(shù)參數(shù):
光源
飽和脈沖:白色LED具有PAR時7000μmols
調(diào)制光:紅色LED 660nm,具有690nm短波過濾。
光化光源:僅可使用外部光源
檢測方法:調(diào)制脈沖法
檢測器&過濾器:具有700~750nm帶通過濾的PIN光電二極管
取樣速率:1~10000點/秒自動切換。
測量時間:3s或長期監(jiān)測
存儲空間:2GB
輸出:USB
尺寸:便攜箱尺寸為14”x 11”x 6”,儀器為9’’長
質(zhì)量:Y(II) 測量儀0.45 kg
FV/FM測量儀0.36 kg.
總重1.95 kg.
產(chǎn)地:美國
文獻
Adams & Demming-Adams 2004 – Chlorophyll Fluorescence as a tool to Monitor Plant Response to the Environment. William W. Adams III and Barbara Demmig-Adams, From Chapter 22, “Chlorophyll a Fluorescence a Signature of Photosynthesis”, edited by George Papaqeorgiou and Govindjee, published by Springer 2004, PO Box 17, 3300 AA Dordrecht, The Netherlands, pages 598 -599
Adams WW III, Demmig-Adams B. (1994) Carotenoid composition and down regulation of Photosystem II in three conifer species during the winter. Physiol Plant 92: 451-458
Ball MC. (1994) The role of photoinhibition during seedling establishment at low temperatures. In: Baker NR. And Bowyer JR. (eds) Photoinhibition of Photosynthesis. From Molecular Mechanisms to the Field, pp365-3376 Bios Scientific Publishers, Oxford
Ball MC., Butterworth JA., Roden JS., Christian R., Egerton JJG., (1995) Applications of chlorophyll fluorescence to forest ecology. Aust. J. Plant Physiology 22: 311-319
Baker N.R, Rosenquist E. (2004) Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities, Bukhov & Carpentier 2004 – Effects of Water Stress on the Photosynthetic Efficiency of Plants, Bukhov NG., & Robert Carpentier, From Chapter 24, “Chlorophyll a Fluorescence a Signature of Photosynthesis”, edited by George
Papaqeorgiou and Govindjee, published by Springer 2004, PO Box 17, 3300 AA Dordrecht, The Netherlands, page 627-628 Burke J. (2007) Evaluation of Source Leaf Responses to Water-Deficit Stresses in Cotton Using a Novel Stress Bioassay, Plant Physiology, Jan. 2007, Vol 143, pp108-121
Burke J., Franks C.D. Burow G., Xin Z. (2010) Selection system for the Stay-Green Drought Tolerance Trait in Sorghum Germplasm, Agronomy Journal 102:1118-1122 May 2010
Cavender-Bares J. & Fakhri A. Bazzaz 2004 – “From Leaves to Ecosystem: Using Chlorophyll Fluorescence to Assess Photosynthesis and Plant Function in Ecological Studies”. Jeannine Cavender Bares, Fakhri A. Bazzaz, From Chapter 29, “Chlorophyll a Fluorescence a Signature of Photosynthesis”, edited by George Papaqeorgiou and Govindjee, published by Springer 2004, PO Box 17, 3300 AA Dordrecht, The Netherlands, page 746-747 ETR Drought stress and npq
Cazzaniga S, Osto L.D., Kong S-G., Wada M., Bassi R., (2013) “Interaction between avoidance of photon absorption, excess energy dissipation and zeaxanthin synthesis against photo oxidative stress in Arabidopsis”, The Plant Journal, Volume 76, Issue 4, pages568–579, November 2013 DOI: 10.1111/tpj.12314
Cheng L., Fuchigami L., Breen P., (2001) “The relationship between photosystem II efficiency and quantum yield for CO2 assimilation is not affected by nitrogen content in apple leaves.”
Adams WW III, Demmig-Adams B., Vernhoeven AS., and Barker DH., (1995) Photoinhibition during winter stress – Involvement of sustained xanthophyll cycle-dependent energy-dissipation. Aust J. Plant Physiol 22: 261-276 Journal of Experimental Botany, 55(403):1607-1621
Journal of Experimental Botany, 52(362):1865-1872Crafts-Brandner S. J., Law R.D. (2000) Effects of heat stress on the inhibition and recovery of ribulase-1, 5- biphsphate carboxylase/ oxygenase activation state. Planta (2000) 212: 67-74
da Silva J. A. & Arrabaca M.C. (2008).Physiologia Plantarum Volume 121 Issue 3, Pages 409 – 420 2008
Eichelman H., Oja V., Rasulov B., Padu E., Bichele I., Pettai H., Niinemets O., Laisk A. (2004) Development of Leaf Photosynthetic Parameters in Betual pendula Roth Leaves: Correlation with Photosystem I Density, Plant Biology 6 (2004):307-318
………………
更多文獻請來電查詢!