我們對比了透射電鏡原位液相方案中的 Nano-Cell和原位樣品桿。
今天我們介紹Ocean和Stream系統中的供液系統的不同。
原位液相方案中的供液系統
圖1. Ocean 系統供液系統,注射泵
上圖可以看到,Ocean 系統的供液方式采用的是步進電機+注射器的注射泵推進方案。這種方案設計簡單,可以為液體提供較大推力。但卻存在以下短板:
1. 相對于微量液體,步進電機的步幅還是較大,無法對流速進行精細控制。
2. 注射器的橡膠塞相對內壁有較大阻尼,無法實現對液體控制的快速響應。
3. 沒有集成氣路,無法向Nano-Cell內吹送氣體、減小液厚。
不過,Ocean 系統的設計初衷就是適用于簡單的液相實驗。這種注射泵加上簡約設計的 Nano-Cell 也足以達到該系統的設計目標。
圖 2. Stream 系統的供液系統設計:伸縮折疊式懸臂,便于安裝和存放
Stream的供液系統(Liquid Supply System,LSS)配備可移動底盤、集成氣動系統、伸縮式懸臂,實驗的時候方便移動、安裝、連接管路,在不用的時候則便于收納和存放。實際上,LSS 采用的是進/出口氣動式雙泵送液設計,內置預先校準過的流量計。功能強大的 LSS 配合獨特設計的 Nano-Cell,可以帶來以下便利:
流量監測+專屬流道,借助閉環反饋軟件,可實現對樣品區流量的精準、穩定控制。
可向 Nano-Cell 內通入氣體、趕走液體,以獲得更好的 TEM 結果。之后還可再送入液體。
直接控制+專屬流道,可以沖走/溶解由于電子束輻照或電化學反應所產生的多余氣泡。
雙泵設計+專屬流道,可實現對液體壓強、流速、厚度的精細控制。
流量監測可及時發現可能的堵塞,雙泵設計一推一拉可及時、有效地清理堵塞物。
LSS 結合 Nano-Cell 設計,芯片上配置進液口、出液口,保證了可靠且可重復的液體輸送功能,成功率超過 95%!
小結
我們從 Nano-Cell、原位樣品桿、供液系統三個方面綜合對比了 DENS Ocean 系統和 Stream 系統前后兩代液相 TEM 方案。其中,Nano-Cell 是核心單元,負責密封液體并可根據需要設計諸多功能;供液系統則是動力系統,負責驅動液體流動,控制流速、壓強等參數;樣品桿則是二者之間的橋梁,借助內置的管路、線路,負責液體、氣體、壓強、電流在兩者之間的互動。
實際上,一套完整的液相方案除了上述三大單元外,還有檢漏儀等附件:
圖3. Ocean 系統的所有單元全預覽:1. Nano-Cell;2. 樣品桿;3. 樣品桿支架;4. 檢漏儀;5. 注射泵;6. 泵頭備品
圖 4. Stream 系統的所有單元預覽:1. 樣品桿;2. Nano-Cell;3. 電腦;4. 對中臺;5. 供液系統;6. 恒電位儀(內置);7. 加熱控制器(內置);8. 檢漏儀
對比觀察上述兩圖,可以看到檢漏儀是液相 TEM 方案的必須配置。它能及時發現泄露風險,確保樣品桿是真空密封的,進而保護 TEM 安全。對于 Stream 系統,還額外配置了恒電位儀/加熱控制器,結合裝有 Impulse 軟件的電腦,可以在液相環境原位進行電化學/加熱實驗。
最后,我們把之前提到的對比匯總成一張表,供大家快速了解兩者差異:
表 1. Ocean 系統和 Stream 系統的各項特性對比
>>>>
參考資料
(1) Ross, F. M. (2015). "Opportunities and challenges in liquid cell electron microscopy." Science 350(6267): aaa9886.
(2) Rehn, S. M. and M. R. Jones (2018). "New strategies for probing energy systems with in situ liquid-phase transmission electron microscopy." ACS Energy Letters 3(6): 1269-1278.
(3)
592
- 1煤氣成分與熱值監測-陜北大型能源化工企業氣體濃度與熱值監測項目
- 2無鹵低煙阻燃材料中炭黑含量檢測結果異常情況的分析
- 3GB 36246-2018中小學合成材料面層運動場地全文
- 4ASTM-D638-2003--中文版-塑料拉伸性能測定方法
- 5GBT 15065-2009 電線電纜用黑色聚乙烯塑料
- 6GB_T2951.41-2008電纜和光纜絕緣和護套材料通用試驗方法
- 7GBT 13021-2023 聚烯烴管材和管件 炭黑含量的測定 煅燒和熱解法
- 8PEG熔融相變溫度測試
- EVA型熱熔膠書刊裝訂強度檢測與質量控制研究
- 自動熱壓機的發展趨勢是怎樣的?
- 用戶論文集 ▏化學吸附 ▏銥-錸共沉積乙醇處理后SiO2載體催化劑應用在甘油氫解反應
- 為什么近期單壁碳納米角(CNH)的研究進展值得關注?
- 為什么介孔SiO2在藥物遞送領域的應用越來越多?
- FRITSCH飛馳球磨——不銹鋼介導的水中球磨條件下定量H2生成實驗研究
- 為什么MoS2在催化領域的研究進展值得關注?
- 飛納臺式掃描電鏡助力納米纖維在心血管組織再生中的研究
- 磷酸化修飾鬼臼果多糖的制備及生物活性
- DSR論文解讀:Advanced Science News 報道中科院長春應化所新型非鉑催化材料研究成果
- High-throughput preparation, scale up and solidification of andrographolide nanosuspension using hummer acoustic resonance technology(納米混懸劑制備的前瞻性技術 - 蜂鳥聲共振)
- 掃描電鏡優秀論文賞析|飛納臺式掃描電鏡電極材料上的應用
- 掃描電鏡論文賞析-干旱影響楊樹葉片及次生木質部發育的分子機制
- 壓實度與密實度的區別
- 振實密度和壓實密度的關系
- 勃姆石專用氣流粉碎機分級機打散機