粉體行業在線展覽
面議
612
德國Ionovation公司生產的Ionovation 電生理分析系統(單細胞膜片鉗),是該領域zui新的產品之一,該產品克服了傳統膜片鉗的一系列缺點,無論從產品的技術含量還是從產品的應用領域上來看,在電生理分析技術中始終處于ling先的地位,代表著電生理分析技術發展的方向,是國內外細胞電生理分析實驗室shou選實驗儀器。 系統介紹 中文名稱:Ionovation Compact 單細胞膜片鉗自定義環境電生理分析系統; Innovation 單細胞膜片鉗定義環境中重組分子進行電生理分析的可靠工具。這種高度靈活的桌面檢測系統可適應多種實驗條件,目前已經被用于對細胞膜離子通道、多種動物和植物轉運蛋白和它們的細胞器進行研究。(詳見參考文獻可案例部分)
產品背景:
細胞膜離子通道是*古老的功能蛋白之一,廣泛存在于從細菌到植物到動物包括人類在內的生物界,是許多基本生物活動如電活動、離子轉運和細胞分泌等的基礎。對于人類而言,由離子通道參與的功能(如電活動)是神經及心血管等系統生理功能的*基本形式之一。對離子通道功能調節機制的深入研究是了解其生理學和生理病理學意義的關鍵所在。
膜片鉗技術是用玻璃微電極吸管把只含1-3個離子通道、面積為幾個平方微米的細胞膜通過負壓吸引封接起來,由于電極頭部與細胞膜的高阻封接,在電極頭部籠罩下的那片膜事實上與膜的其他部分從電學上隔離,因此,此片膜內開放所產生的電流流進玻璃吸管,用一個極為敏感的電流監視器(膜片鉗放大器)測量此電流強度,就代表單一離子通道電流。膜片鉗技術發展至今,已經成為現代細胞電生理的常規方法。但是隨著研究的深入,目前發現傳統膜片鉗主要有以下缺點:
·測量非常耗時
·需要高度熟練的操作者來進行實驗
·需要建立千兆歐姆的封阻,但是千兆歐姆的封阻在測試時不穩定
·并不是所有離子通道都可以被測試,一般是配體或者在一側可以交換緩沖液的才可以被測量
·膜片鉗無法對細胞器進行分析
·在測量過程中的細胞往往形成穿孔
·結果在穩定背景下經過多次測量形成平均值,測量值離散度大
Ionovation 單細胞膜片鉗比傳統膜片鉗的優勢主要在于:
·不需要建立千兆歐姆的封阻
·是wei一一種采用雙層封阻的測量方式
·可用于檢測各種細胞膜上的離子通道、囊泡、配體
·容易實現對單個離子通道進行分析檢測
·可以在膜的兩側改變條件,形成雙信道進行分析
參考文獻
1. Wei? K, Neef A, Van Q, Kramer S, Gregor I, Enderlein J.Quantifying the diffusion of membrane proteins and peptides in black lipid membranes with 2-focus fluorescence correlation spectroscopy.Biophys J. 2013 Jul 16;105(2):455-62. doi: 10.1016/j.bpj.2013.06.004.
2. Weingarth M, Prokofyev A, van der Cruijsen EA, Nand D, Bonvin AM, Pongs O, Baldus M.Structural determinants of specific lipid binding to potassium channels.J Am Chem Soc. 2013 Mar 13;135(10):3983-8. doi: 10.1021/ja3119114. Epub 2013 Mar 4.
3. Theis T, Mishra B, von der Ohe M, Loers G, Prondzynski M, Pless O, Blackshear PJ, Schachner M, Kleene R.Functional role of the interaction between polysialic acid and myristoylated alanine-rich C kinase substrate at the plasma membrane.J Biol Chem. 2013 Mar 1;288(9):6726-42. doi: 10.1074/jbc.M112.444034. Epub 2013 Jan 17.
4. K?stler K, Werz E, Malecki E, Montilla-Martinez M, Rosemeyer H. Nucleoterpenes of thymidine and 2'-deoxyinosine: synthons for a biomimetic lipophilization of oligonucleotides Chem Biodivers. 2013 Jan;10(1):39-61. doi: 10.1002/cbdv.201100338.
5. Schmidt F, Levin J, Kamp F, Kretzschmar H, Giese A, B?tzel K. Single-channel electrophysiology reveals a distinct and uniform pore complex formed by α-synuclein oligomers in lipid membranes. PLoS One. 2012;7(8):e42545. doi: 10.1371/journal.pone.0042545. Epub 2012 Aug 3.
6. Betaneli V, Petrov EP, Schwille P. The role of lipids in VDAC oligomerization. Biophys J. 2012 Feb 8;102(3):523-31. doi: 10.1016/j.bpj.2011.12.049. Epub 2012 Feb
7. Wei? K., Enderlein J. Lipid Diffusion within Black Lipid Membranes Measured with Dual-Focus Fluorescence Correlation Spectroscopy. Chemphyschem. 2012 Mar;13(4):990-1000.
8. Werz E, Korneev S, Montilla-Martinez M, Wagner R, Hemmler R, Walter C, Eisfeld J, Gall K, Rosemeyer H. Specific DNA Duplex Formation at an Artificial Lipid Bilayer: towards a New DNA Biosensor Technology. Chem Biodivers. 2012; Feb;9(2):272-81.
9. Schmidt F, Levin J, Kamp F, Kretzschmar H, Giese A, B?tzel K. Single-channel electrophysiology reveals a distinct and uniform pore complex formed by α-synuclein oligomers in lipid membranes. PLoS One. 2012;7(8):e42545. doi: 10.1371/journal.pone.0042545. Epub 2012 Aug 3.
10. Betaneli V, Petrov EP, Schwille P. The role of lipids in VDAC oligomerization Biophys J. 2012 Feb 8;102(3):523-31. doi: 10.1016/j.bpj.2011.12.049. Epub 2012 Feb 7.
11. Wei? K., Enderlein J. Lipid Diffusion within Black Lipid Membranes Measured with Dual-Focus Fluorescence Correlation Spectroscopy. Chemphyschem. 2012 Mar;13(4):990-1000.
12. Werz E, Korneev S, Montilla-Martinez M, Wagner R, Hemmler R, Walter C, Eisfeld J, Gall K, Rosemeyer H. Specific DNA Duplex Formation at an Artificial Lipid Bilayer: towards a New DNA Biosensor Technology. Chem Biodivers. 2012; Feb;9(2):272-81
13. Erika Kovács-Bogdán, J Philipp Benz, Jürgen Soll, Bettina B?lter Tic20 forms a channel independent of Tic110 in chloroplasts BMC Plant Biol. 2011; 11: 133.
14. Honigmann A, Walter C, Erdmann F, Eggeling C, Wagner R. Characterization of horizontal lipid bilayers as a model system to study lipid phase separation. Biophys J. 2010 Jun 16;98(12):2886-94.
15. Schneider R, Etzkorn M, Giller K, Daebel V, Eisfeld J, Zweckstetter M, Griesinger C, Becker S, Lange AThe native conformation of the human VDAC1 N terminus. Angew Chem Int Ed Engl. 2010 Mar 1;49(10):1882-5.
16. Kostka M, H?gen T, Danzer KM, Levin J, Habeck M, Wirth A, Wagner R, Glabe CG, Finger S, Heinzelmann U, Garidel P, Duan W, Ross CA, Kretzschmar H, Giese A. Single-particle characterization of iron-induced pore-forming alpha -synuclein oligomers. J Biol Chem. 2008 Feb 7.
17. van der Laan M, Meinecke M, Dudek J, Hutu DP, Lind M, Perschil I, Guiard B, Wagner R, Pfanner N, Rehling P. Motor-free mitochondrial presequence translocase drives membrane integration of preproteins. Nat Cell Biol. 2007; 9(10):1152-9.
18. Pagliuca C, Goetze TA, Wagner R, Thiel G, Moroni A, Parcej D. Molecular properties of Kcv, a virus encoded K+ channel. Biochemistry. 2007; 46(4):1079-90.
19. Goetze TA, Philippar K, Ilkavets I, Soll J, Wagner R. OEP37 is a new member of the chloroplast outer membrane ion channels J Biol Chem. 2006; 281(26):17989-98. Epub 2006 Apr 19
20. Kovermann P, Truscott KN, Guiard B, Rehling P, Sepuri NB, Muller H, Jensen RE, Wagner R, Pfanner N. Tim22, the essential core of the mitochondrial protein insertion complex, forms a voltage-activated and signal-gated channel Mol Cell. 2002; 9(2):363-73.
21. Meuser D, Splitt H, Wagner R, Schrempf H. Mutations stabilizing an open conformation within the external region of the permeation pathway of the potassium channel KcsA. Eur Biophys J. 2001; 30(5):385-91.
22. Hill K, Model K, Ryan MT, Dietmeier K, Martin F, Wagner R, Pfanner N. Tom40 forms the hydrophilic channel of the mitochondrial import pore for preproteins [see comment] Nature. 1998; 395(6701):516-21.